Revue d'Evidence-Based Medicine
Comment gérer les données manquantes dans une RCT ?
Données manquantes et biais d’attrition
Dans une RCT, une analyse en intention de traiter (ITT) est préférable, sauf exception (par exemple étude de non infériorité), parce qu’elle maintient la comparaison de base établie par la randomisation et qu’elle estime mieux ce qui se produit « dans la réalité de tous les jours », sur le terrain où le traitement sera utilisé (1,2).
Malgré les efforts des chercheurs, des données pour les critères de jugement choisis ne sont pas toujours disponibles en fin d’étude pour tous les patients inclus.
Par exemple, dans une étude (3) évaluant l’efficacité du l’indacatérol (2 dosages différents) versus formotérol et versus placebo durant 52 semaines chez des patients souffrant d’une BPCO, il y a 23 à 32% de sorties d’étude, en proportion inégale selon les groupes (4).
Pour éviter un biais d’attrition (alias, biais de migration) (erreur systématique lors de l’analyse en se focalisant sur les patients ayant terminé l’étude uniquement, et en négligeant les données manquantes, dues notamment aux sorties d’étude pour effet indésirable (« dropout ») ou raison inconnue (« lost to follow-up » par exemple)), l’analyse en ITT doit être associée à un remplacement des données manquantes (1,2). Ceci est d’autant plus important si le motif de sortie d’étude est une caractéristique du patient, par exemple son pronostic, et que la répartition entre les groupes d’étude aboutit à une non comparabilité des groupes pour cette caractéristique ou bien que la répartition initiale est correcte mais que les taux de sorties d’étude en raison de ce pronostic sont (fort) différents selon les bras d’étude.
Groenwold et coll. (2014) illustrent par 3 exemples l’importance d’un biais d’attrition non corrigé (5).
Dans une RCT évaluant l’effet d’un traitement A versus placebo, le sexe est un facteur pronostique important de survenue du critère de jugement étudié : 30% d’incidence chez les hommes sans traitement actif, 10% chez les femmes. Initialement, bonne répartition hommes/femmes (500/500) par bras d’étude.
Dans un premier scenario, données disponibles pour tous les patients : RR de 0,80 pour l’efficacité du traitement. Il est donc jugé bénéfique.
Dans un deuxième scénario, toutes les femmes sous traitement A quittent l’étude (pour effet indésirable sexe-dépendant par exemple) ; seuls les hommes, plus à risque, restent dans ce bras d’étude : RR de 1,20 pour l’efficacité du traitement, donc jugé nocif.
Dans un troisième scenario, 25% de données manquantes dans les deux bras, mais chez 50% des femmes (et non des hommes) du bras traitement A et chez 50% des hommes (et non des femmes) sous placebo : RR de 1,12 pour l’efficacité du traitement, donc jugé nocif.
Scénario 1. Données disponibles pour tous les patients.
traitement |
placebo |
|
Femmes |
40/500 |
50/500 |
Hommes |
120/500 |
150/500 |
160/1 000 |
200/1 000 |
RR = Re/Rc = (160/1000)/(200/1 000) = 0,16/0,2 = 0,80
Scénario 2. Toutes les données des femmes sont manquantes.
traitement |
placebo |
|
Femmes |
- |
50/500 |
Hommes |
120/500 |
150/500 |
120/500 |
200/1 000 |
RR = Re/Rc = (120/500)/(200/1 000) = 0,24/0,2 = 1,20
Scénario 3. 25% de données manquantes dans les deux bras.
traitement |
placebo |
|
Femmes |
20/250 |
50/500 |
Hommes |
120/500 |
75/250 |
140/750 |
125/750 |
RR = Re/Rc = (140/750)/(125/750) = 0,187/0,167 = 1,12
Remplacement des données manquantes
Pour éviter ce genre d’erreur, Groenwold et coll. insistent sur la nécessité de bien mentionner dans le rapport d’étude les caractéristiques initiales des patients dans chacun des bras, mais aussi les caractéristiques pour les personnes dont les résultats sont disponibles (et analysés). Comme nous l’avons démontré ci-dessus, ceci est particulièrement intéressant pour les caractéristiques à importance pronostique… pour autant que celles-ci soient bien identifiables. Dans des études d’observation, en fonction de ces données, un ajustement peut corriger les données (pour le sexe par exemple) et donner ainsi un résultat corrigé, non biaisé. Dans les RCTs, ce sont des techniques statistiques d’imputation multiple et de pondération par les probabilités inversées qui doivent être utilisées, chacune présentant des avantages respectifs (6).
Conclusion
Lors de la lecture d’un rapport d’étude, il est important de vérifier les caractéristiques initiales des participants dans les différents bras d’étude, leur répartition semblable suivant les bras d’étude, le nombre de sorties d’étude (données manquantes) avec les motifs. Un plus est la mention des caractéristiques comparatives des sujets avec analyse des résultats en fin d’étude et si nécessaire, un remplacement des données manquantes par une technique statistique validée.
- Chevalier P. Analyse en intention de traiter. MinervaF 2010:9(2):28.
- Chevalier P. Analyse en intention de traiter modifiée. MinervaF 2011;10(2):25.
- Dahl R, Chung KF, Buhl R, et al; INVOLVE (Indacaterol: Value in COPD: Longer Term Validation of Efficacy and Safety) Study Investigators. Efficacy of a new once-daily long-acting inhaled beta2-agonist indacaterol versus twice-daily formoterol in COPD. Thorax 2010;65:473-9. (Etude INVOLVE).
- Chevalier P. Indacatérol, nouveau LABA, dans le traitement de la BPCO ? MinervaF 2011;10(1):10-1.
- Groenwold RH, Moons KG, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. CMAJ 2014;186:1153-7.
- Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res 2013;22:278-95.
Ajoutez un commentaire
Commentaires